Language Inference Using Elman Networks with Evolutionary Training

Author:

Anastasopoulos Nikolaos,Tsoulos Ioannis G.,Dermatas Evangelos,Karvounis EvangelosORCID

Abstract

In this paper, a novel Elman-type recurrent neural network (RNN) is presented for the binary classification of arbitrary symbol sequences, and a novel training method, including both evolutionary and local search methods, is evaluated using sequence databases from a wide range of scientific areas. An efficient, publicly available, software tool is implemented in C++, accelerating significantly (more than 40 times) the RNN weights estimation process using both simd and multi-thread technology. The experimental results, in all databases, with the hybrid training method show improvements in a range of 2% to 25% compared with the standard genetic algorithm.

Publisher

MDPI AG

Subject

General Medicine

Reference37 articles.

1. Recurrent neural network based language model;Mikolov;Proceedings of the INTERSPEECH-2010,2010

2. Towards classifying full-text using recurrent neural networks;Farkas;Proceedings of the 1995 Canadian Conference on Electrical and Computer Engineering,1995

3. Speech recognition with deep recurrent neural networks;Graves;Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,2013

4. Document modeling with gated recurrent neural network for sentiment classification;Tang;Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,2015

5. Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks;Graves;Proceedings of the NIPS’08: 21st International Conference on Neural Information Processing Systems,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3