Activity Recognition Based on Millimeter-Wave Radar by Fusing Point Cloud and Range–Doppler Information

Author:

Huang Yuchen,Li Wei,Dou Zhiyang,Zou Wantong,Zhang Anye,Li ZanORCID

Abstract

Millimeter-wave radar has demonstrated its high efficiency in complex environments in recent years, which outperforms LiDAR and computer vision in human activity recognition in the presence of smoke, fog, and dust. In previous studies, researchers mostly analyzed either 2D (3D) point cloud or range–Doppler information from radar echo to extract activity features. In this paper, we propose a multi-model deep learning approach to fuse the features of both point clouds and range–Doppler for classifying six activities, i.e., boxing, jumping, squatting, walking, circling, and high-knee lifting, based on a millimeter-wave radar. We adopt a CNN–LSTM model to extract the time-serial features from point clouds and a CNN model to obtain the features from range–Doppler. Then we fuse the two features and input the fused feature into the full connected layer for classification. We built a dataset based on a 3D millimeter-wave radar from 17 volunteers. The evaluation result based on the dataset shows that this method has higher accuracy than utilizing the two kinds of information separately and achieves a recognition accuracy of 97.26%, which is about 1% higher than other networks with only one kind of data as input.

Funder

National Natural Science Foundation of China

Jilin Province Science and Technology Department

Publisher

MDPI AG

Reference23 articles.

1. Determining Human Target Facing Orientation Using Bistatic Radar Micro-Doppler Signals;Fairchild;Proc. SPIE Int. Soc. Opt. Eng.,2014

2. mmEat: Millimeter wave-enabled environment-invariant eating behavior monitoring

3. Application of Deep Learning on Millimeter-Wave Radar Signals: A Review

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3