Abstract
A hybrid procedure that incorporates grammatical evolution and a weight decaying technique is proposed here for various classification and regression problems. The proposed method has two main phases: the creation of features and the evaluation of these features. During the first phase, using grammatical evolution, new features are created as non-linear combinations of the original features of the datasets. In the second phase, based on the characteristics of the first phase, the original dataset is modified and a neural network trained with a genetic algorithm is applied to this dataset. The proposed method was applied to an extremely wide set of datasets from the relevant literature and the experimental results were compared with four other techniques.