An Improved Method for Swing State Estimation in Multirotor Slung Load Applications

Author:

de Angelis Emanuele Luigi1ORCID,Giulietti Fabrizio1ORCID

Affiliation:

1. Department of Industrial Engineering, Interdepartmental Centre for Industrial Aerospace Research, University of Bologna, 47121 Forlí, Italy

Abstract

A method is proposed to estimate the swing state of a suspended payload in multirotor drone delivery scenarios. Starting from the equations of motion of the coupled slung load system, defined by two point masses interconnected by a rigid link, a recursive algorithm is developed to estimate cable swing angle and rate from acceleration measurements available from an onboard Inertial Measurement Unit, without the need for extra sensors. The estimation problem is addressed according to the Extended Kalman Filter structure. With respect to the classical linear formulation, the proposed approach allows for improved estimation accuracy in both stationary and maneuvering flight. As an additional contribution, filter performance is enhanced by accounting for aerodynamic disturbance force, which largely affects the estimation accuracy in windy flight conditions. The validity of the proposed methodology is demonstrated as follows. First, it is applied to an octarotor platform where propellers are modeled according to blade element theory and the load is suspended by an elastic cable. Numerical simulations show that estimated swing angle and rate represent suitable feedback variables for payload stabilization, with benefits on flying qualities and energy demand. The algorithm is finally implemented on a small-scale quadrotor and is investigated through an outdoor experimental campaign, thus proving the effectiveness of the approach in a real application scenario.

Funder

European Union Next-GenerationEU

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Drone Transportation of a Cable-Suspended Load: Dynamics and Control;Drones;2024-08-26

2. Cooperative Transportation of a Cable-Suspended Load: Dynamics and Control;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

3. Hierarchical Control Design for a Helicopter-Payload System for Water Monitoring;2024 International Conference on Unmanned Aircraft Systems (ICUAS);2024-06-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3