Efficient YOLOv7-Drone: An Enhanced Object Detection Approach for Drone Aerial Imagery

Author:

Fu Xiaofeng1,Wei Guoting2ORCID,Yuan Xia2ORCID,Liang Yongshun3,Bo Yuming1

Affiliation:

1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

2. School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

3. School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

In recent years, the rise of low-cost mini rotary-wing drone technology across diverse sectors has emphasized the crucial role of object detection within drone aerial imagery. Low-cost mini rotary-wing drones come with intrinsic limitations, especially in computational power. Drones come with intrinsic limitations, especially in resource availability. This context underscores an urgent need for solutions that synergize low latency, high precision, and computational efficiency. Previous methodologies have primarily depended on high-resolution images, leading to considerable computational burdens. To enhance the efficiency and accuracy of object detection in drone aerial images, and building on the YOLOv7, we propose the Efficient YOLOv7-Drone. Recognizing the common presence of small objects in aerial imagery, we eliminated the less efficient P5 detection head and incorporated the P2 detection head for increased precision in small object detection. To ensure efficient feature relay from the Backbone to the Neck, channels within the CBS module were optimized. To focus the model more on the foreground and reduce redundant computations, the TGM-CESC module was introduced, achieving the generation of pixel-level constrained sparse convolution masks. Furthermore, to mitigate potential data losses from sparse convolution, we embedded the head context-enhanced method (HCEM). Comprehensive evaluation using the VisDrone and UAVDT datasets demonstrated our model’s efficacy and practical applicability. The Efficient Yolov7-Drone achieved state-of-the-art scores while ensuring real-time detection performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3