Analysis of UTM Tracking Performance for Conformance Monitoring via Hybrid SITL Monte Carlo Methods

Author:

Dai Wei12ORCID,Quek Zhi Hao2,Pang Bizhao12ORCID,Feroskhan Mir1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore

2. Air Traffic Management Research Institute, Nanyang Technological University, Singapore 637460, Singapore

Abstract

Conformance monitoring supports UTM safety by observing if unmanned aircraft (UA) are adhering to declared operational intent. As a supporting system, robust cooperative tracking is critical. Nevertheless, tracking systems for UAS traffic management (UTM) are in an early stage and under-standardized, and existing literature hardly addresses the problem. To bridge this gap, this study aims to probabilistically evaluate the impact of the change in tracking performances on the effectiveness of conformance monitoring. We propose a Monte Carlo simulation-based method. To ensure a realistic simulation environment, we use a hybrid software-in-the-loop (SITL) scheme. The major uncertainties contributing to the stochastic evaluation are measured separately and are integrated into the final Monte Carlo simulation. Latency tests were conducted to assess the performance of different communication technologies for cooperative tracking. Flight technical error generation via SITL simulations and navigational system error generation based on flight experiments were employed to model UA trajectory uncertainty. Based on these tests, further Monte Carlo simulations were used to study the overall impacts of various tracking key performance indicators in UTM conformance monitoring. Results suggest that the extrapolation of UA position enables quicker non-conformance detection, but introduces greater variability in detection delay, and exacerbates the incidence of nuisance alerts and missed detections, particularly when latencies are high and velocity errors are severe. Recommendations for UA position update rates of ≥1 Hz remain consistent with previous studies, as investments in increasing the update rate do not lead to corresponding improvements in conformance monitoring performance according to simulation results.

Funder

National Research Foundation

Civil Aviation Authority of Singapore

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3