An Autonomous Soaring for Small Drones Using the Extended Kalman Filter Thermal Updraft Center Prediction Method Based on Ordinary Least Squares

Author:

An Weigang1,Lin Tianyu1,Zhang Peng2

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

2. The Pre Research Center of AVIC Chengdu Caic Electronics Co., Ltd., Chengdu 610041, China

Abstract

Many birds in the natural world are capable of engaging in sustained soaring within thermal updrafts for extended periods without flapping their wings. Autonomous soaring has the potential to greatly improve both the range and endurance of small drones. In this paper, the extended Kalman filter (EKF) thermal updraft center prediction method based on ordinary least squares (OLS) is proposed to develop the autonomous soaring system for small drones, and an adaptive step size update strategy is incorporated into the EKF. The proposed method is compared with EKF thermal updraft prediction methods through simulated experiments. The results indicate that the proposed prediction method has low computational complexity and fast convergence speed and performs more stably in weak thermal updrafts. The above advantages stem from the OLS providing an approximate distribution of the thermal updraft around the drone for the EKF. This empowers the EKF algorithm with ample information to dynamically update the thermal updraft center in real time. The adaptive step size update strategy further accelerates the convergence speed of this process. In addition, flight experiments were conducted on the Talon fixed-wing drone platform to test the autonomous soaring system. During the flight experiment, the drone successfully engaged in static soaring within thermal updrafts, effectively hovering and gaining energy. Throughout the approximately 40 min flight duration, the drone only utilized its propulsion for about 8 min. This demonstrated the effectiveness of the autonomous soaring system using the EKF thermal updraft center prediction method based on OLS. Finally, by analyzing and discussing the differences between the simulation experiment results and the flight experiment results, some improvement strategies for the current work are proposed.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3