Quantifying Within-Flight Variation in Land Surface Temperature from a UAV-Based Thermal Infrared Camera

Author:

Elfarkh Jamal12ORCID,Johansen Kasper1ORCID,Angulo Victor1ORCID,Camargo Omar Lopez1,McCabe Matthew F.13ORCID

Affiliation:

1. Hydrology, Agriculture and Land Observation (HALO) Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

2. Center for Remote Sensing Applications (CRSA), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco

3. Climate and Livability Initiative, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Land Surface Temperature (LST) is a key variable used across various applications, including irrigation monitoring, vegetation health assessment and urban heat island studies. While satellites offer moderate-resolution LST data, unmanned aerial vehicles (UAVs) provide high-resolution thermal infrared measurements. However, the continuous and rapid variation in LST makes the production of orthomosaics from UAV-based image collections challenging. Understanding the environmental and meteorological factors that amplify this variation is necessary to select the most suitable conditions for collecting UAV-based thermal data. Here, we capture variations in LST while hovering for 15–20 min over diverse surfaces, covering sand, water, grass, and an olive tree orchard. The impact of different flying heights and times of the day was examined, with all collected thermal data evaluated against calibrated field-based Apogee SI-111 sensors. The evaluation showed a significant error in UAV-based data associated with wind speed, which increased the bias from −1.02 to 3.86 °C for 0.8 to 8.5 m/s winds, respectively. Different surfaces, albeit under varying ambient conditions, showed temperature variations ranging from 1.4 to 6 °C during the flights. The temperature variations observed while hovering were linked to solar radiation, specifically radiation fluctuations occurring after sunrise and before sunset. Irrigation and atmospheric conditions (i.e., thin clouds) also contributed to observed temperature variations. This research offers valuable insights into LST variations during standard 15–20 min UAV flights under diverse environmental conditions. Understanding these factors is essential for developing correction procedures and considering data inconsistencies when processing and interpreting UAV-based thermal infrared data and derived orthomosaics.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3