Research on Data Link Channel Decoding Optimization Scheme for Drone Power Inspection Scenarios

Author:

Yu Haizhi1,Zhang Kaisa2ORCID,Zhao Xu3,Zhang Yubing3,Cui Bingfeng4,Sun Shujuan5,Liu Gengshuo5,Yu Bo6,Ma Chao6,Liu Ying6,Gao Weidong1

Affiliation:

1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Beijing Smartchip Microelectronics Technology Company Limited, Beijing 100089, China

4. State Grid Corporation of China, Beijing 100031, China

5. State Grid Xiongan New Area Electric Power Supply Company, Baoding 071600, China

6. Yingli Energy Development Co., Ltd., Baoding 071000, China

Abstract

With the rapid development of smart grids, the deployment number of transmission lines has significantly increased, posing significant challenges to the detection and maintenance of power facilities. Unmanned aerial vehicles (UAVs) have become a common means of power inspection. In the context of drone power inspection, drone clusters are used as relays for long-distance communication to expand the communication range and achieve data transmission between patrol drones and base stations. Most of the communication occurs in the air-to-air channel between UAVs, which requires high reliability of communication between drone relays. Therefore, the main focus of this paper is on decoding schemes for drone air-to-air channels. Given the limited computing resources and battery capacity of a drone, as well as the large amount of power data that needs to be transmitted between drone relays, this paper aims to design a high-accuracy and low-complexity decoder for LDPC long-code decoding. We propose a novel shared-parameter neural-network-normalized minimum sum decoding algorithm based on codebook quantization, applying deep learning to traditional LDPC decoding methods. In order to achieve high decoding performance while reducing complexity, this scheme utilizes codebook-based weight quantization and parameter sharing methods to improve the neural-network-normalized minimum sum (NNMS) decoding algorithm. Simulation experimental results show that the proposed method has a better BER performance and low computational complexity. Therefore, the LDPC decoding algorithm designed effectively meets the drone characteristics and the high channel decoding performance requirements. This ensures efficient and reliable data transmission on the data link between drone relays.

Funder

State Grid Corporation Headquarters Science and Technology Project

Beijing New Generation Information and Communication Technology Innovation Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3