Stability of Medicines Transported by Cargo Drones: Investigating the Effects of Vibration from Multi-Stage Flight

Author:

Theobald Katherine1,Zhu Wanqing2,Waters Timothy1,Cherrett Thomas1,Oakey Andy1ORCID,Royall Paul G.2ORCID

Affiliation:

1. Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK

2. Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK

Abstract

The timely distribution of medicines to patients is an essential part of the patient care plan, and maximising efficiency in the logistics systems behind these movements is vital to minimise cost. Before drones can be used for moving medical cargo, medical regulatory authorities require assurance that the transported products will not be adversely affected by in-flight conditions unique to each drone. This study set out to (i) quantify the vibration profile by phases of flight, (ii) determine to what extent there were significant differences in the observed vibration between the phases, and (iii) assess the quality of flown monoclonal antibody (mAb) infusions used in the treatment of cancer. Vibrations emanating from the drone and transmitted through standard medical packaging were monitored with the storage specifications for mean kinematic temperature (2–8 °C) being met. Vibration levels were recorded between 1.5 and 3 g, with the dominant octave band being 250 Hz. After 60 flights, the quality attributes of flown infusions regarding size integrity were found to be no different from those of the control infusions. For example, the particle size had a variation of less than 1 nm; one peak for Trastuzumab was 14.6 ± 0.07 nm, and Rituximab was 13.3 ± 0.90 nm. The aggregation (%) and fragmentation (%) remained at 0.18 ± 0.01% and 0.11 ± 0.02% for Trastuzumab, 0.11 ± 0.01% and 2.82 ± 0.15% for Rituximab. The results indicated that in the case of mAbs, the quality assurance specifications were met and that drone vibration did not adversely affect the quality of drone-flown medicines.

Funder

UK EPSRC-funded e-Drone project

UK Department for Transport Funded Future Transport Zones Solent project

King’s-China Scholarship Council (K-CSC) PhD Scholarship Programme

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference46 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3