On Joint Optimization of UAV-Assisted Covert Communication Systems with NOMA for Hydropower Internet of Things

Author:

Le Zhenchun1,Xu Qing2,Wang Yining2,Hao Guowen3,Pan Weifeng2,Sun Yanlin2,Qian Yuwen4ORCID

Affiliation:

1. State Grid Corporation of China, Beijing 100031, China

2. State Grid Electric Power Research Institute, Nanjing 210003, China

3. State Grid Xin Yuan Company Limited, Beijing 100056, China

4. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The intelligent terminals deployed in hydropower IoT can quickly sense the status of hydropower equipment, thus improving the efficiency of system control and operation. However, communication security between the base station and intelligent terminals challenges the IoT hydropower plant. In this paper, we propose a UAV-assisted covert communication system (CCS), where a UAV acts as the base station to provide communication service to ground terminals monitored by malicious users. To improve access effectiveness, we adopt non-orthogonal multiple access (NOMA) for intelligent terminals to access the hydropower IoT. Since two devices can synchronously access the communication system with the NOMA scheme, we select one terminal to receive covert messages and the other to interfere with the malicious users to detect confidential communications. To maximize the covert rate, we formulate the optimization problem that jointly optimizes the transmit power, the altitude of the UAV, and trajectory under the constraints of covertness and the finite length of the transmission message block. Additionally, we transform the optimization problem into a geometric planning one, which is solved by a developed sequential geometric planning (SGP) approximation algorithm. Simulation results show the proposed algorithm can improve the covert rate compared to the traditional methods.

Funder

State Grid Electric Power Company Science and Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3