Air-to-Ground Path Loss Model at 3.6 GHz under Agricultural Scenarios Based on Measurements and Artificial Neural Networks

Author:

Li Hanpeng1,Mao Kai1,Ye Xuchao1,Zhang Taotao2,Zhu Qiuming1ORCID,Wang Manxi2,Ge Yurao1,Li Hangang1,Ali Farman1

Affiliation:

1. The Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space, College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003, China

Abstract

Unmanned aerial vehicles (UAVs) have found expanding utilization in smart agriculture. Path loss (PL) is of significant importance in the link budget of UAV-aided air-to-ground (A2G) communications. This paper proposes a machine-learning-based PL model for A2G communication in agricultural scenarios. On this basis, a double-weight neurons-based artificial neural network (DWN-ANN) is proposed, which can strike a fine equilibrium between the amount of measurement data and the accuracy of predictions by using ray tracing (RT) simulation data for pre-training and measurement data for optimization training. Moreover, an RT pre-correction module is introduced into the DWN-ANN to optimize the impact of varying farmland materials on the accuracy of RT simulation, thereby improving the accuracy of RT simulation data. Finally, channel measurement campaigns are carried out over a farmland area at 3.6 GHz, and the measurement data are used for the training and validation of the proposed DWN-ANN. The prediction results of the proposed PL model demonstrate a fine concordance with the measurement data and are better than the traditional empirical models.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Key Technologies R&D Program of Jiangsu

open research fund of the National Mobile Communications Research Laboratory, Southeast University

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3