High-Performance Detection-Based Tracker for Multiple Object Tracking in UAVs

Author:

Li Xi1,Zhu Ruixiang1,Yu Xianguo2,Wang Xiangke2ORCID

Affiliation:

1. Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410004, China

2. College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

As a result of increasing urbanization, traffic monitoring in cities has become a challenging task. The use of Unmanned Aerial Vehicles (UAVs) provides an attractive solution to this problem. Multi-Object Tracking (MOT) for UAVs is a key technology to fulfill this task. Traditional detection-based-tracking (DBT) methods begin by employing an object detector to retrieve targets in each image and then track them based on a matching algorithm. Recently, the popular multi-task learning methods have been dominating this area, since they can detect targets and extract Re-Identification (Re-ID) features in a computationally efficient way. However, the detection task and the tracking task have conflicting requirements on image features, leading to the poor performance of the joint learning model compared to separate detection and tracking methods. The problem is more severe when it comes to UAV images due to the presence of irregular motion of a large number of small targets. In this paper, we propose using a balanced Joint Detection and Re-ID learning (JDR) network to address the MOT problem in UAV vision. To better handle the non-uniform motion of objects in UAV videos, the Set-Membership Filter is applied, which describes object state as a bounded set. An appearance-matching cascade is then proposed based on the target state set. Furthermore, a Motion-Mutation module is designed to address the challenges posed by the abrupt motion of UAV. Extensive experiments on the VisDrone2019-MOT dataset certify that our proposed model, referred to as SMFMOT, outperforms the state-of-the-art models by a wide margin and achieves superior performance in the MOT tasks in UAV videos.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Hunan Province

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3