Competition and Cooperation for Multiple Solar Powered Unmanned Aerial Vehicles under Static Soaring

Author:

Wu Yansen1,Li Ke1ORCID,Zhao Anmin1,Wang Shaofan1,Li Yuangan1,Chen Xiaodan1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 102206, China

Abstract

This work examines the competition and allocation of multiple solar-powered unmanned aerial vehicles (SUAVs) to a single thermal since multiple SUAVs often demonstrate superior mission performance compared to a single SUAV. Additionally, they can harvest extra energy from thermal updrafts. This work considers two conditions, a non-cooperative competition and a cooperative allocation of thermal. In each case, corresponding objective functions and constraints are established, and assignment schemes are derived by solving these objective functions. The allocation results are simulated and integrated with the dynamics and solar energy model. The numerical results show that, in the non-cooperative mode, the first vehicle to reach the thermal can occupy it for soaring, while the remaining SUAVs will fly towards the destination directly. But in the cooperative mode, the multiple SUAVs will allocate the thermal to the SUAV with the highest energy gain through soaring, to maximize the overall electric energy storage of the SUAV group.

Funder

National Natural Science Foundation of China

Aeronautical Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3