A Multi-Regional Path-Planning Method for Rescue UAVs with Priority Constraints

Author:

Du Lexu12ORCID,Fan Yankai3ORCID,Gui Mingzhen12ORCID,Zhao Dangjun12ORCID

Affiliation:

1. School of Automation, Central South University, Changsha 410083, China

2. Hunan Provincial Key Laboratory of Optic-Electronic Intelligent Measurement and Control, Changsha 410083, China

3. Academy of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

This study focuses on the path-planning problem of rescue UAVs with regional detection priority. Initially, we propose a mixed-integer programming model that integrates coverage path planning (CPP) and the hierarchical traveling salesman problem (HTSP) to address multi-regional path planning under priority constraints. For intra-regional path planning, we present an enhanced method for acquiring reciprocating flight paths to ensure complete coverage of convex polygonal regions with shorter flight paths when a UAV is equipped with sensors featuring circular sampling ranges. An additional comparison was made for spiral flight paths, and second-order Bezier curves were employed to optimize both sets of paths. This optimization not only reduced the path length but also enhanced the ability to counteract inherent drone jitter. Additionally, we propose a variable neighborhood descent algorithm based on K-nearest neighbors to solve the inter-regional access order path-planning problem with priority. We establish parameters for measuring distance and evaluating the priority order of UAV flight paths. Simulation and experiment results demonstrate that the proposed algorithm can effectively assist UAVs in performing path-planning tasks with priority constraints, enabling faster information collection in important areas and facilitating quick exploration of three-dimensional characteristics in unknown disaster areas by rescue workers. This algorithm significantly enhances the safety of rescue workers and optimizes crucial rescue times in key areas.

Funder

National Key Research and Development Program of China

Open Fund of the Laboratory of Pinghu

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3