Optimal Model-Free Finite-Time Control Based on Terminal Sliding Mode for a Coaxial Rotor

Author:

Glida Hossam1ORCID,Sentouh Chouki12ORCID,Rath Jagat3ORCID

Affiliation:

1. LAMIH UMR 8201 CNRS, University Polytechnique Hauts-de-France, 59313 Valenciennes, France

2. INSA Hauts-de-France, 59313 Valenciennes, France

3. Department of Mechanical and Aero-Space Engineering, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India

Abstract

This study focuses on addressing the tracking control problem for a coaxial unmanned aerial vehicle (UAV) without any prior knowledge of its dynamic model. To overcome the limitations of model-based control, a model-free approach based on terminal sliding mode control is proposed for achieving precise position and rotation tracking. The terminal sliding mode technique is utilized to approximate the unknown nonlinear model of the system, while the global stability with finite-time convergence of the overall system is guaranteed using the Lyapunov theory. Additionally, the selection of control parameters is addressed by incorporating the accelerated particle swarm optimization (APSO) algorithm. Finally, numerical simulation tests are provided to demonstrate the effectiveness and feasibility of the proposed design approach, which demonstrates the capability of the model-free control approach to achieve accurate tracking control even without prior knowledge of the system’s dynamic model.

Funder

French Regional Delegation for Research and Technology

French Ministry of Higher Education and Research

the French National Center for Scientific Research

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3