A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection

Author:

Lee Jin-Hwan1ORCID,Gwon Gi-Hun1,Kim In-Ho2ORCID,Jung Hyung-Jo1

Affiliation:

1. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

2. Department of Civil Engineering, Kunsan National University, Gunsan 54150, Republic of Korea

Abstract

Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images.

Funder

National Research Foundation of Korea

Research Center for Smart Submerged Floating Tunnel System

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive block size selection in a hybrid image compression algorithm employing the DCT and SVD;International Journal on Smart Sensing and Intelligent Systems;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3