Performance of Flax/Epoxy Composites Made from Fabrics of Different Structures

Author:

Alipour Abdolmajid1ORCID,Jayaraman Krishnan1

Affiliation:

1. Centre for Advanced Materials Manufacturing and Design (CAMMD), Department of Mechanical and Mechatronics Engineering, The University of Auckland, Auckland 1142, New Zealand

Abstract

Flax fibers have been shown to have comparable mechanical properties to some conventional synthetic fibers. Flax fabrics with different textile structures show differences in resistance against mechanical loads mainly rooted in fabric orientation and the resultant resin impregnation. Thus, in this study, flax fabrics with three different textile structures, fine twill weave, coarse twill weave and unidirectional, were used as reinforcements in an epoxy matrix. The surfaces of the fabrics were chemically treated using an alkaline treatment, and the alterations in fabric crystallinity index (CrI) were determined using X-ray diffraction (XRD). Experimental results confirmed that textile structures and CrI had significant effects on the mechanical properties of composites. Although an increment in CrI, resulting from chemical treatment, always enhanced tensile and flexural properties, it adversely affected damage development once composites were exposed to impact load. In terms of textile structures, unidirectional fabric outperformed woven fabrics in tensile and flexural properties while in impact properties, the latter had a better performance inducing less damage development. Finally, the mechanism of damage development in different composites was discussed in detail using Scanning Electron Microscopy (SEM) images. It is envisaged that the results of this study will provide an insight that will lead to the proper choice of the optimal kind of flax fabric for different applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3