Detection of Performance of Hybrid Rice Pot-Tray Sowing Utilizing Machine Vision and Machine Learning Approach
Author:
Dong Wenhao,Ma Xu,Li Hongwei,Tan Suiyan,Guo Linjie
Abstract
Monitoring the performance of hybrid rice seeding is very important for the seedling production line to adjust the sowing amount of the seeding device. The objective of this paper was to develop a system for the real-time online monitoring of the performance of hybrid rice seeding based on embedded machine vision and machine learning technology. The embedded detection system captured images of pot trays that passed under the illuminant cabinet installed in the seedling production line. This paper proposed an algorithm for fixed threshold segmentation by analyzing the images with the exploratory analysis method. With the algorithm, the grid image and seed image were extracted from the pot tray image. The paper also proposed a method for obtaining pixel coordinates of gridlines from the grid image. Binary images of seeds were divided into small pieces, according to the pixel coordinates of gridlines. Each piece corresponded to a cell on the pot tray. By scanning the contours in each piece of the image to check whether there were seeds in the cell, the number of empty cells was counted and then used to calculate the missing rate of hybrid rice seeding. The seed number sowed in pot trays was monitored while using the machine learning approach. The experimental results demonstrated that it would consume 4.863 s for the device to process an image, which allowed for the detection of the missing rate and seed number in real-time at the rate of 500 trays per hour (7.2 s per tray). The average accuracy of the detection of missing rates of a seedling production line was 94.67%. The average accuracy of the detection of seed numbers was 95.68%.
Funder
the Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference19 articles.
1. Hybrid rice achievements, development and prospect in China
2. Effects of broadcast sowing and precision drilling of super rice seed on seedling quality and effectiveness of mechanized transplanting;Xu;Trans. Chin. Soc. Agric. Eng.,2009
3. Detecting seed suction performance of air suction feeder by photoelectric sensor combined with rotary encoder;Jia;Trans. Chin. Soc. Agric. Eng.,2018
4. OPTO-ELECTRONIC SENSOR SYSTEM FOR RAPID EVALUATION OF PLANTER SEED SPACING UNIFORMITY
5. A machine vision system for seeds quality evaluation using fuzzy logic;Edwin;Comput. Electr. Eng.,2018
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献