Viability of Reclaiming Municipal Wastewater for Potential Microalgae-Based Biofuel Production in the U.S.

Author:

Wu May1,McBride Sarah1,Ha Miae1

Affiliation:

1. Energy Systems Infrastructure Assessment Division, Argonne National Laboratory, Lemont, IL 60439, USA

Abstract

Reclaimed municipal wastewater is a crucial component in biofuel production, especially in regions experiencing increasing freshwater scarcity. However, accurately estimating the potential for fuel production is challenging because of the uneven distribution of biofuel feedstock regions and wastewater treatment plants (WWTPs). This study assesses the viability of using reclaimed municipal water for algal biomass production in pond systems co-located with WWTPs under scenarios driven by biomass production and based on water transport logistics. We performed state- and county-level analysis of reclaimed water resources throughout the United States based on WWTP facility data. We overlaid these data onto estimated algae facility sites and examined the temporal resource availability to address seasonal variations in cultivation demand. Our findings reveal that 2694 billion liters per year of reclaimed water could potentially be used to produce 42.2 million metric tons (ash-free dry weight) of algal biomass, equivalent to 29.2 billion liters of renewable diesel equivalent (RDe). The use of reclaimed water would double current national water reuse and expand such reuse significantly in 455 counties across the United States. However, when we limit the construction of algae facilities to counties that can fully meet their water demand in order to minimize water transport burdens, the available supply decreases by 80%, to 512 billion liters, resulting in annual production of 12.2 billion liters of RDe, which still doubles current biodiesel production. Our analysis highlights the degree to which the location and flow of WWTPs and water transport affect the deployment of algae biofuel facilities and tradeoffs. These findings underscore the importance of improving the current WWTP infrastructure for reclaimed water reuse, especially in southern states.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3