A Bayesian Network-Based Inhibition Model of the Rainstorm–Landslide–Debris Flow Disaster Chain in Mountainous Areas: The Case of the Greater Bay Area, China

Author:

Xiao Ping1,Wang Ting1,Tian Yu1,Xie Xinmin1,You Jinjun1,Tan Xinru2,Chen He2

Affiliation:

1. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

2. College of Water Conservancy and Hydropower Engineering, HoHai University, Nanjing 210098, China

Abstract

In this study, a Bayesian network (BN)-based inhibition model is developed for the rainstorm–landslide–debris flow (R-L-D) disaster chain in the mountainous area of the Greater Bay Area (GBA), China, using the historical disaster data. Twelve nodes are selected for the inhibition model, which are classified into four types, including Hazardous Factor, Response Operation, Disaster Evolution, and Disaster Result. By combining the proposed inhibition with the scenario analysis method, the probabilities of the BN nodes under different rainfall scenarios are analyzed, and then the inhibitory effects of the environmental geological conditions and rescue speed on the R-L-D disaster chain under the most unfavorable rainfall scenario are investigated. On this basis, an inhibition framework consisting of the early warning, inhibition, and measures layers is proposed for the R-L-D disaster chain. The results reveal that under the most unfavorable rainfall scenarios, where the rainfall intensity is greater than 100 mm/d and the rainfall duration is greater than 24 h, the probability of landslides and debris flow is 0.930 and 0.665, respectively. Improving the environmental geological conditions such as slope, lithology and geological structure can greatly inhibit the occurrence of the R-L-D disaster chain. Moreover, the improvement of geological structure conditions is the most significant, and reduces the probability of landslides and debris flow by 0.684 and 0.430, respectively, as well as reducing the probability of death and direct economic loss by 0.411 and 0.619, respectively. Similarly, increasing the rescue speed leads to a reduction in the probability of death and direct economic loss by 0.201 and 0.355, respectively. This study can provide theoretical and practical insights into the prevention and inhibition of the R-L-D disaster chain.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3