The Application of Micro-Vibratory Phenomena of a Shape-Memory Alloy Wire to a Novel Vibrator

Author:

Chujo Takashi1,Sawada Hideyuki2ORCID

Affiliation:

1. Department of Applied Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

2. Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

The widespread use of smartphones and smart wearable devices has created a great demand for vibrators with complex vibration patterns driven by simple circuits. In our previous studies, we observed that a filiform shape-memory alloy (SMA) wire will shrink and then return to its initial length, perfectly synchronizing with a given pulse current. Here, we developed a novel vibrator whose structure allows the micro-vibrations of an SMA wire to be amplified up to a recognizable level without directly touching the wire. The vibrator has the advantage of independently controlling its magnitude and frequency together with a simple driving circuit since it is directly driven by a frequency-modulated pulse current with a controlled duty ratio. We measured the power consumption and the acceleration generated by the vibrator. The results showed that the vibrator consumed only 4–77 milliwatts of power with a quick vibration response within 5 milliseconds, and the acceleration increased significantly in a duty ratio range of around 1%. Furthermore, user evaluations demonstrated that differences in the magnitude and frequency of the generated vibrations were sufficiently recognized when the vibrator was driven by different duty ratios and frequencies, and the vibrator provided various tactile and haptic sensations to users.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3