Exploring the Relationship between Preprocessing and Hyperparameter Tuning for Vibration-Based Machine Fault Diagnosis Using CNNs

Author:

Hendriks JacobORCID,Dumond Patrick

Abstract

This paper demonstrates the differences between popular transformation-based input representations for vibration-based machine fault diagnosis. This paper highlights the dependency of different input representations on hyperparameter selection with the results of training different configurations of classical convolutional neural networks (CNNs) with three common benchmarking datasets. Raw temporal measurement, Fourier spectrum, envelope spectrum, and spectrogram input types are individually used to train CNNs. Many configurations of CNNs are trained, with variable input sizes, convolutional kernel sizes and stride. The results show that each input type favors different combinations of hyperparameters, and that each of the datasets studied yield different performance characteristics. The input sizes are found to be the most significant determiner of whether overfitting will occur. It is demonstrated that CNNs trained with spectrograms are less dependent on hyperparameter optimization over all three datasets. This paper demonstrates the wide range of performance achieved by CNNs when preprocessing method and hyperparameters are varied as well as their complex interaction, providing researchers with useful background information and a starting place for further optimization.

Publisher

MDPI AG

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SHREC 2024: Recognition of dynamic hand motions molding clay;Computers & Graphics;2024-10

2. CSP- LSTM Based Emotion Recognition from EEG Signals;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

3. Failure diagnosis of rotating Machines for steam turbine in Cap-Djinet thermal power plant;Engineering Failure Analysis;2023-07

4. Performance of Recurrent Neural Networks in Liver Disease Classification;2023 Second International Conference on Electronics and Renewable Systems (ICEARS);2023-03-02

5. A Survey on Data Augmentation Techniques;2023 7th International Conference on Computing Methodologies and Communication (ICCMC);2023-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3