Vibration Measurements by Self-Mixing Interferometry: An Overview of Configurations and Benchmark Performances

Author:

Donati Silvano1

Affiliation:

1. Department of Industrial Engineering and Informatics, University of Pavia, 27100 Pavia, Italy

Abstract

Self-mixing interferometry (SMI) is suitable to sense and measure vibrations of amplitudes ranging from picometers to millimeters at frequencies from sub-Hz to MHz’s. As an optical probe, SMI has the advantage of being non-invasive with the ability to measure without any treatment of the target surface and operate from a substantial standoff distance from the target. As an additional advantage, the SMI configuration is much simpler than that of conventional interferometers as it does not require any optical part external to the laser source. After a short introduction to the basics of SMI, we review the development of configurations of SMI instruments for vibration measurements, based on both analog and digital processing, with record performance to cover the range of vibration amplitudes from 0.1 nm to 1 mm, frequencies up to MHz, and stand-off distances up to 100 m. These performances set a benchmark that is unequaled by other approaches reported so far in the literature. The configurations we describe are (i) a simple MEMS-response testing instrument based on fringe counting, (ii) a half-fringe locking vibrometer for mechanical mode analysis and transfer function measurements, with a wide linear response on six decades of amplitude, (iii) a vibrometer with analog switching cancellation for μm-to-mm amplitude of vibrations, and (iv) a long standoff distance vibrometer for testing large structures at distances up to 100 m and with nm sensitivity. Lastly, as the vibrometer will almost invariably operate on untreated, diffusing surfaces, we provide an evaluation of phase-induced speckle pattern errors affecting the SMI measurement.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Materials Science (miscellaneous)

Reference52 articles.

1. Piersol, A.G., and Paez, T.L. (2010). Harris’ Shock and Vibration Handbook, McGraw Hill. [6th ed.].

2. Ver, I.L., and Beranek, L.L. (2006). Noise and Vibration Control Engineering, J. Wiley and Sons. [2nd ed.].

3. Donati, S. (2004). Electrooptical Instrumentation, Prentice Hall. 94–107 and 109–110.

4. Laser Triangulation: Fundamental Uncertainty in Distance Measurements;Dorsch;Appl. Opt.,1994

5. Displacement measurements using a self-mixing laser diode under moderate feedback;Bes;IEEE Trans. Instrum. Meas.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3