Abstract
This work suggests a solution for joint input-state estimation for nonlinear systems. The task is to recover the internal states of a nonlinear oscillator, the displacement and velocity of the system, and the unmeasured external forces applied. To do this, a Gaussian process latent force model is developed for nonlinear systems. The model places a Gaussian process prior over the unknown input forces for the system, converts this into a state-space form and then augments the nonlinear system with these additional hidden states. To perform inference over this nonlinear state-space model a particle Gibbs approach is used combining a “Particle Gibbs with Ancestor Sampling” Markov kernel for the states and a Metropolis-Hastings update for the hyperparameters of the Gaussian process. This approach is shown to be effective in a numerical case study on a Duffing oscillator where the internal states and the unknown forcing are recovered, each with a normalised mean-squared error less than 0.5%. It is also shown how this Bayesian approach allows uncertainty quantification of the estimates of the states and inputs which can be invaluable in further engineering analyses.
Funder
Engineering and Physical Sciences Research Council
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献