Development of a Novel Damage Detection Framework for Truss Railway Bridges Using Operational Acceleration and Strain Response

Author:

Azim Md RiasatORCID,Gül MustafaORCID

Abstract

Railway bridges are an integral part of any railway communication network. As more and more railway bridges are showing signs of deterioration due to various natural and artificial causes, it is becoming increasingly imperative to develop effective health monitoring strategies specifically tailored to railway bridges. This paper presents a new damage detection framework for element level damage identification, for railway truss bridges, that combines the analysis of acceleration and strain responses. For this research, operational acceleration and strain time-history responses are obtained in response to the passage of trains. The acceleration response is analyzed through a sensor-clustering-based time-series analysis method and damage features are investigated in terms of structural nodes from the truss bridge. The strain data is analyzed through principal component analysis and provides information on damage from instrumented truss elements. A new damage index is developed by formulating a strategy to combine the damage features obtained individually from both acceleration and strain analysis. The proposed method is validated through a numerical study by utilizing a finite element model of a railway truss bridge. It is shown that while both methods individually can provide information on damage location, and severity, the new framework helps to provide substantially improved damage localization and can overcome the limitations of individual analysis.

Funder

Networks of Centres of Excellence of Canada

Publisher

MDPI AG

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3