Observer-Based H∞ Controller Design for High Frequency Stick-Slip Vibrations Mitigation in Drill-String of Rotary Drilling Systems

Author:

Riane Rami,Doghmane Mohamed ZinelabidineORCID,Kidouche Madjid,Djezzar Sofiane

Abstract

The drilling process is among the most crucial steps in exploration and production activities in the petroleum industry. It consists of using mechanical mechanisms to crush rocks by the drill bit to pass through the different geological layers. The drill-string continuously transforms the rotational movement from the top drive motor to the drill bit through the drill pipes. Due to the strong interactions with the rocks, aggressive vibrations can arise in the drill-string in its three dimensions, and consequently, this may create three types of synchronous vibrations: axial, lateral, and torsional. The severe status of the latter is known as the stick-slip phenomenon, and is the most common in rotary drilling systems. Based on field observations, it has been inferred that the high frequency stick-slip vibrations may lead to drill-string fatigues and even to premature rupture. In the best case, it reduces the drilling efficiency by decreasing the rate of penetration, due to which the drilling operations become proportionally expensive. The main novelties of this research work are the design of an H∞ observer-based controller to mitigate the high frequency stick-slip vibrations, and the quantitative analysis of the vibrations’ severity for ten degrees of freedom model. The observer is designed to estimate the non-measurable rotational velocity of the drill bit due to the severity of the vibrations, while the controller is dedicated to suppressing the vibrations by using the top drive inputs. Thus, many scenarios have been considered to test and analyze the observer performance and the controller robustness. Furthermore, a comparison with the LQG observer-based controller has been conducted, where H∞ has demonstrated better efficiency in suppressing the stick-slip vibrations under unstructured perturbations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3