Abstract
Railway transport is considered relatively environmentally friendly in terms of energy consumption and air pollution, but it is relatively unfriendly in terms of noise pollution. Noise and vibrations propagating to railroad surrounding areas are disturbing populations. In order to minimize this noise, legislation and regulations such as TSI NOI have been adopted and research of noise and vibrations generated by railway transport has been carried out. Such research has been carried out also by our team focused on experimental investigation of noise generated by railway wagons, in this particular case on tank wagons. We simulated the structural eigenfrequencies of both bogies and tanks using FEM models to find vibrations and corresponding noise levels generated by these vibrations. Theoretical results have been compared with results of measurements of noise generated by impact hammer and visualization of noise fields using a digital acoustic camera Soundcam. Based on the simulation and measurements, principal frequency noise domains of fundamental noise sources were determined—rolling (40–63 Hz), tank (200–1000 Hz), bogie (400–1600 Hz), and wheel (800–10,000 Hz). Measurements on the railway line under real operational conditions at two train speeds have been carried out, too, to see the actual external noise levels.
Funder
European Regional Development Fund
Reference21 articles.
1. Commission Implementing Regulation (EU) 2019/774 of 16 May 2019 Amending Regulation (EU) No 1304/2014 as Regards Application of the Technical Specification for Interoperability Relating to the Subsystem ‘Rolling Stock—Noise’ to the Existing Freight Wagons,2019
2. Noise in Europe 2014;Nugent,2014
3. Noise annoyance through railway traffic - a case study
4. Assessment of railway noise in an urban setting
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献