Abstract
In this paper, dynamic and vibration characteristics of a newly developed 5-degrees-of-freedom (5-DOF) long-reach robotic arm for farm applications is studied through finite element analysis (FEA), as well as experimentally. The new manipulator is designed to be light and compact enough that it can be mounted on a small vehicle for farm applications. A finite element model of this novel manipulator was established using a commercial FEA software. FEA was carried out for two different configurations of the manipulator (fully-extended and vertical half-extended). The fully-extended configuration provides the longest reach of the arm and is one of the most commonly used poses in farm applications; vibrations of this configuration are highly affected by its base excitation. The FEA results indicated that the first six natural frequencies of the manipulator for the two configurations considered were between 4.4 to 41.6 (Hz). Modal analysis on the fully-extended configuration was completed using experimental modal analysis to verify the finite element results. In the experiments, acceleration data were obtained utilizing sensors, and were post-processed using Fast-Fourier Transforms. The first six natural frequencies and their corresponding mode shapes were obtained using FEA and also experimentally, and the results were compared; the comparison showed good agreement, with less than 10% difference. Our verified FE model provides a reliable basis for future vibration control for the newly developed robotic arm for different applications. A harmonic response simulation was also carried out using an experimentally corrected FE model; this provides a good understanding of the dynamic behavior of the newly developed arm under base excitation. This paper offers an experimentally corrected FEA model for a large manipulator with base excitation for farm applications.
Funder
Natural Sciences and Engineering Research Council
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献