Abstract
Innovative design and technological advancements in the construction industry have resulted in an increased use of large, slender and lightweight floors in contemporary office buildings. Compounded by an ever-increasing use of open-plan layouts with few internal partitions and thus lower damping, floor vibration is becoming a governing limit state in the modern structural design originating from dynamic footfall excitations. This could cause annoyance and discomfort to building occupants as well as knock-on management and financial consequences for facility owners. This article presents a comprehensive review pertinent to walking-induced dynamic loading of low-frequency floor structures. It is intended to introduce and explain key walking parameters in the field as well as summarise the development of previous walking models and methods for vibration serviceability assessment. Although a number of walking models and design procedures have been proposed, the literature survey highlights that further work is required in the following areas; (1) the development of a probabilistic multi-person loading model which accounts for inter- and intra-subject variabilities, (2) the identification of walking paths (routes accounting for the effect of occupancy patterns on office floors) coupled with spatial distribution of pedestrians and (3) the production of a statistical spatial response approach for vibration serviceability assessment. A stochastic approach, capable of taking into account uncertainties in loading model and vibration responses, appears to be a more reliable way forward compared to the deterministic approaches of the past and there is a clear need for further research in this area.
Funder
Qatar National Research Fund
Reference131 articles.
1. Critical review of guidelines for checking vibration serviceability of post-tensioned concrete floors
2. Vibration serviceability of long-span concrete building floors: Part 1—Review of background information;Pavic;Shock Vib. Dig.,2002
3. Vibration serviceability of long-span concrete building floors: Part 2—Review of mathematical modelling approaches;Pavic;Shock Vib. Dig.,2002
4. Vibration Characteristics of Modern Composite Floor Systems
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献