H 2 and H ∞ Optimal Control Strategies for Energy Harvesting by Regenerative Shock Absorbers in Cars †

Author:

Casavola Alessandro,Tedesco Francesco,Vaglica Pasquale

Abstract

Regenerative suspension systems, unlike traditional passive, semi-active or active setups, are able to convert the traditionally wasted kinetic energy into electricity. This paper discusses flexible multi-objective control design strategies based on LMI formulations to suitably trade-off between the usual road handling and ride comfort performance and the amount of energy to be harvested. An electromechanical regenerative vehicle suspension system is considered where the shock absorber of each wheel is replaced by a linear electrical motor which is actively governed. It is shown by simulations that multivariable centralized control laws designed on the basis of a full-car model of the suspension system are able to achieve larger amount of harvested energy under identical ride comfort prescriptions with respect to scalar decentralized control strategies, designed on the basis of a single quarter-car model and implemented independently on each wheel in a decentralized way. Improvements up to 40 % and 20 % of harvested energy are respectively achievable by the centralized multivariable H 2 and H ∞ optimal controllers under the same test conditions.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3