A Heterogeneous Edge-Fog Environment Supporting Digital Twins for Remote Inspections

Author:

Silva Luiz A. Z. da,Vidal Vinicius F.ORCID,Honório Leonardo M.ORCID,Dantas Mário A. R.ORCID,Pinto Milena FariaORCID,Capretz MiriamORCID

Abstract

The increase in the development of digital twins brings several advantages to inspection and maintenance, but also new challenges. Digital models capable of representing real equipment for full remote inspection demand the synchronization, integration, and fusion of several sensors and methodologies such as stereo vision, monocular Simultaneous Localization and Mapping (SLAM), laser and RGB-D camera readings, texture analysis, filters, thermal, and multi-spectral images. This multidimensional information makes it possible to have a full understanding of given equipment, enabling remote diagnosis. To solve this problem, the present work uses an edge-fog-cloud architecture running over a publisher-subscriber communication framework to optimize the computational costs and throughput. In this approach, each process is embedded in an edge node responsible for prepossessing a given amount of data that optimizes the trade-off of processing capabilities and throughput delays. All information is integrated with different levels of fog nodes and a cloud server to maximize performance. To demonstrate this proposal, a real-time 3D reconstruction problem using moving cameras is shown. In this scenario, a stereo and RDB-D cameras run over edge nodes, filtering, and prepossessing the initial data. Furthermore, the point cloud and image registration, odometry, and filtering run over fog clusters. A cloud server is responsible for texturing and processing the final results. This approach enables us to optimize the time lag between data acquisition and operator visualization, and it is easily scalable if new sensors and algorithms must be added. The experimental results will demonstrate precision by comparing the results with ground-truth data, scalability by adding further readings and performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3