Microstructure Evolution and Recrystallization Temperature Change of Cold-Rolled Fe–19Mn–0.6C Twinning-Induced Plasticity Steel during Annealing

Author:

Xue Hui,Yuan Hui,Guo Kai,Zhang Zhijia,Zhang Mengmeng

Abstract

Ultra-high twinning-induced plasticity (TWIP) steel is receiving increasing attention in the automobile industry. Self-designed Fe–19Mn–0.6C TWIP steel was subjected to reveal the relationship between microstructures, which were related to recrystallization starting/ending temperature and cold rolling. The results indicated that initial deformation twins, secondary deformation twins, and nano-twins were successively generated in rolled TWIP steel with the increase of cold rolling, deformation twins, and dislocations, as well as with the elongation of grains. The elements remained uniformly dispersed rather than agglomerated in the twin crystals and grain boundaries. The recrystallization starting temperature changes of TWIP steel were 500–525, 400–425, 400–415, and 400–410 °C at cold rolling deformations of 25%, 50%, 75%, and 88%, respectively. Furthermore, the obtained corresponding recrystallization ending temperature changes were 580–600, 530–550, 520–540, and 500–520 °C, respectively. The linear relationship between cold deformation and hardness suggests that cold rolling can increase dislocation density and thus facilitate improving the hardness of TWIP steel.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3