Abstract
Ti15Mo alloy was subjected to two techniques of intensive plastic deformation, namely high pressure torsion and rotary swaging at room temperature. The imposed strain resulted in the formation of an ultrafine-grained structure in both deformed conditions. Detailed inspection of the microstructure revealed the presence of grains with a size of around 100 nm in both conditions. The microstructure after rotary swaging also contained elongated grains with a length up to 1 µm. Isothermal ageing at 400 °C and 500 °C up to 16 h was applied to both conditions to investigate the kinetics of precipitation of the α phase and the recovery of lattice defects. Positron annihilation spectroscopy indicated that the recovery of lattice defects in the β matrix had already occurred at 400 °C and, in terms of positron trapping, was partly compensated by the precipitation of incoherent α particles. At 500 °C the recovery was fully offset by the formation of incoherent α/β interfaces. Contrary to common coarse-grained material, in which the α phase precipitates in the form of lamellae, precipitation of small and equiaxed α particles occurred in the deformed condition. A refined two-phase equiaxed microstructure with α particles and β grain sizes below 1 μm is achievable by simple rotary swaging followed by ageing.
Funder
Grantová Agentura České Republiky
Ministerstvo Školství, Mládeže a Tělovýchovy
European Regional Development Fund
Subject
General Materials Science,Metals and Alloys
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献