Phase Transformations upon Ageing in Ti15Mo Alloy Subjected to Two Different Deformation Methods

Author:

Bartha KristínaORCID,Stráský Josef,Veverková Anna,Veselý Jozef,Čížek Jakub,Málek JaroslavORCID,Polyakova Veronika,Semenova IrinaORCID,Janeček Miloš

Abstract

Ti15Mo alloy was subjected to two techniques of intensive plastic deformation, namely high pressure torsion and rotary swaging at room temperature. The imposed strain resulted in the formation of an ultrafine-grained structure in both deformed conditions. Detailed inspection of the microstructure revealed the presence of grains with a size of around 100 nm in both conditions. The microstructure after rotary swaging also contained elongated grains with a length up to 1 µm. Isothermal ageing at 400 °C and 500 °C up to 16 h was applied to both conditions to investigate the kinetics of precipitation of the α phase and the recovery of lattice defects. Positron annihilation spectroscopy indicated that the recovery of lattice defects in the β matrix had already occurred at 400 °C and, in terms of positron trapping, was partly compensated by the precipitation of incoherent α particles. At 500 °C the recovery was fully offset by the formation of incoherent α/β interfaces. Contrary to common coarse-grained material, in which the α phase precipitates in the form of lamellae, precipitation of small and equiaxed α particles occurred in the deformed condition. A refined two-phase equiaxed microstructure with α particles and β grain sizes below 1 μm is achievable by simple rotary swaging followed by ageing.

Funder

Grantová Agentura České Republiky

Ministerstvo Školství, Mládeže a Tělovýchovy

European Regional Development Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3