Effect of Process Parameters on the Quality of Laser-Cut Stainless Steel Thin Plates

Author:

Buj-Corral IreneORCID,Costa-Herrero Lluís,Domínguez-Fernández AlejandroORCID

Abstract

At present, laser cutting is currently employed to cut metallic plates, due to their good finish and dimensional quality, as well as because of the flexibility of the process to obtain different shapes. In the present paper, surface roughness, dimensional accuracy, and burr thickness of thin plates of 0.8 mm are studied as functions of different process parameters: pulse frequency, pulse width, and speed. Eight different experiments were performed according to a full 23 factorial design, with two replicates each. Square specimens of 10 mm × 10 mm were cut. Arithmetical mean roughness Ra was measured with a contact roughness meter, and the dimensions and burr thickness with a micrometer. Ra values ranged between 1.89 and 3.86 µm, dimensional error values between 0.22 and 0.93%, and burr thickness between 2 and 34 µm. Regression analysis was performed, and linear models were obtained for each response. Results showed that roughness depends mainly on frequency, on the interaction of frequency and pulse width and on pulse width. Dimensional error depends on pulse width, frequency, and the interaction between pulse width and speed. Burr thickness is influenced by frequency, pulse width, and the interaction between frequency and speed. Multi-objective optimization showed that, in order to simultaneously minimize the three responses, it is recommended to use high frequency (80 Hz), high pulse width (0.6 ms), and high speed (140 mm/min). The present study will help to select appropriate laser cutting conditions in thin plates, in order to favor good surface finish and dimensional accuracy, as well as low burr thickness.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3