Author:
Liu Chenghong,Ding Xueyong,Liu Hegong,Yan Xinlin,Dong Chao,Wang Jia
Abstract
The reduction process inside the ore pre-reduction rotary kiln involves a series of physicochemical reactions, and in-depth understanding of the reduction behavior is helpful to improve the product quality and productivity. This paper reports a three-dimensional steady state mathematical model based on computational fluid dynamics, which considers heat transfer, mass transfer and chemical reactions inside the rotary kiln. A user-defined functions (UDFs) program in C language is developed to define physical parameters and chemical reactions, and calculate the heat and mass transfer between freeboard and bed regions. The model is validated by measurement data and is then used to investigate the detailed information inside the rotary kiln. The results show that there is a temperature gradient in the bed, which is maximal near the kiln tail and decreases gradually as the reduction process progresses. The result also confirms that the reduction of FeO to Fe is the limiting step of the whole reduction process because this reaction requires a higher reduction potential. Furthermore, the influence of C/O mole ratio and fill degree are analyzed by comparing the average bed temperature, reduction potential and metallization ratio.
Funder
National Key R&D Program of China
Subject
General Materials Science,Metals and Alloys
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献