Hot Deformation Behavior and Dynamic Recrystallization of Ultra High Strength Steel

Author:

Zhong Liping,Wang BoORCID,Hu Chundong,Zhang Jieyu,Yao Yu

Abstract

In this paper, in order to improve the microstructure uniformity of an ultra-high strength martensitic steel with a strength greater than 2500 Mpa developed by multi-directional forging in the laboratory, a single-pass hot compression experiment with the strain rate of 0.01 to 1 s−1 and a temperature of 800 to 1150 °C was conducted. Based on the experimental data, the material parameters were determined, the constitutive model considering the influence of work hardening, the recrystallization softening on the dislocation density, and the recrystallized grain size model were established. After introducing the model into the finite element software DEFORM-3D, the thermal compression experiment was simulated, and the results were consistent with the experimental results. The rule for obtaining forging stock with a uniform and refinement microstructure was acquired by comparing the simulation and the experimental results, which are helpful to formulate an appropriate forging process.

Funder

Innovation Program of Shanghai Municipal Education Commission

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference28 articles.

1. Ultrahigh-strength low-alloy steels with enhanced fracture toughness

2. Ultra-high strength steel;Wu;Iron Steel,1986

3. Application of numerical simulation technology in the heavy forgings production;Wang;Heavy Cast. Forg.,1999

4. FEM SIMULATION OF TUBE AXIAL COMPRESSIVE PRECISION FORMING PROCESS

5. Finite-element analysis of microstructure evolution in the cogging of alloy 781 ingot;Jong;Mater. Sci. Eng. A,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3