Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys

Author:

Bunaziv Ivan,Akselsen Odd M.,Ren XiaoboORCID,Nyhus Bård,Eriksson Magnus

Abstract

Aluminium alloys are widely used in many industries due to their high strength-to-weight ratios and resistance to corrosion. Due to their specific thermophysical properties and intricate physical metallurgy, these alloys are challenging to weld. Work-hardened alloys may experience strength loss in heat-affected zones (HAZ). The strength of precipitation-hardened alloys is severely damaged in both HAZ and weld metal due to coarsening or full dissolution. The high thermal conductivity and reflectivity of aluminium causes lower laser beam absorptivity with lower processing efficiency. Weld imperfections such as porosity, humping, and underfills are frequently formed due to the low melting point and density promoting high liquidity with low surface tension. Porosity is the most persistent imperfection and is detrimental for mechanical properties. In this work, extensive review was made on laser beam and laser-arc hybrid welding of aluminium alloys. Solidification cracking, evaporation of alloying elements, porosity and keyhole stability, and other challenges are studied in detail. The current development of laser welding of aluminium alloys is not so mature and new discoveries will be made in the future including the use of newly developed laser systems, welding consumables, welding methods, and approaches.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3