Role of the Jet Angle, Particle Size, and Particle Concentration in the Degradation Behavior of Carbon Steel under Slow Slurry Erosion-Corrosion Conditions

Author:

Rasse Charles,Mary NicolasORCID,Abe Hiroshi,Watanabe Yutaka,Normand BernardORCID

Abstract

Erosion-corrosion behavior of piping systems is a critical issue for their durability. This work concerns the erosion-corrosion behavior of carbon steel as a function of abradant characteristics as particle size and concentration. Degradation tests were performed in a jet erosion-corrosion cell with a maximum flow rate of 4.8 m/s, and jet angles comprised 30° and 90°. Abradant particles consisted of angular alumina powder with a mean diameter of 181, 219, and 359 µm. A critical threshold flow velocity of about 2.5 m/s was determined when experiments were performed with particles with diameters of 181 µm and jet angles of 45°. Even if erosion did not occur, the degradation rate increased compared with the stagnant condition because of dissolved dioxygen supply. A maximum of erosion-corrosion of 4 mg × cm−2 × h−1 was determined for the jet angle of 45°, irrespective of the particle sizes. The increase of abradant concentration led to a higher degradation rate regardless of the jet angle. However, the degradation rates tended to limit values of 7 mg × cm−2 × h−1 at 45° and 5 mg × cm−2 × h−1 at 90°. Above a critical concentration, a slowdown of the degradation was measured, suggesting that particle behavior in dense fluid acts on material degradation. This critical concentration can be understood from the interactions of the particles in concentrated media that modify trajectories in the flow and at the metal surface, reducing their kinetic energy consequently.

Funder

Agence Nationale de la Recherche

Ministry of Education, Culture, Sports, Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3