Damage Characteristics of PELE Projectile with Gradient Density Inner Core Material

Author:

Ding Liangliang,Zhou Jingyuan,Tang WenhuiORCID,Ran Xianwen,Cheng Ye

Abstract

The PELE (penetration with enhanced lateral efficiency) projectile is a new type of safe ammunition which can form a large number of fragments after perforating the target, and does not depend on any pyrotechnics. The damage characteristics of PELE projectile mainly include the penetration ability and fragmentation effect. There are many factors affecting the damage characteristics of PELE projectile, and this paper attempts to study the damage characteristics of PELE projectile, from the point of view of changing the single core material. Therefore, four different inner core combination types were designed in this paper, namely, zero gradient—I type (PE), zero gradient—II type (Al), positive gradient type (PE + Al), and negative gradient type (Al + PE). With the help of a more mature numerical simulation method, the studies were carried out from several aspects, such as the axial residual velocity of projectile, the radial scattering velocity of fragments, the radial scattering radius of fragments, and the residual length of projectile. The axial residual velocity of projectile can characterize the penetration ability of projectile, the radial scattering velocity and radial scattering radius of fragments can predict the damage area of fragments, and the residual length of projectile can reflect the fragment conversion rate of casing. The results indicate that the negative gradient inner core combination is superior to the other three combinations in terms of the penetration ability and fragmentation effect. Under the same impact velocity, the maximum radial velocity and radial scattering radius of fragments mainly depend on the front inner core material, and these two parameters will increase appropriately with the increase of the strength of front inner core material. Similarly, the residual length of projectile can be reduced, or the fragment conversion rate can be enhanced, by properly reducing the strength of rear inner core material. The conclusions obtained in this paper can provide a reference for engineering applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. 105/120/125 mm PELE Firing Resultshttps://ndiastorage.blob.core.usgovcloudapi.net/ndia/2005/garm/wednesday/borngen.pdf

2. Capabilities of Penetrator with Enhanced Lateral Efficiencyhttps://ndiastorage.blob.core.usgovcloudapi.net/ndia/2007/gun_missile/GMTueAM1/GloudePresentation.pdf

3. Impact behaviour of PELE projectiles perforating thin target plates

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3