Abstract
The melting points of the phase change materials (PCMs) incorporated into the walls of buildings should be within the human thermal comfort temperature range. In this paper, 15 wt.% of MgCl2·6H2O was mixed with CaCl2·6H2O to obtain the eutectic with a melting point of 23.9 °C. SrCl2·6H2O suppresses the supecooling of the eutectic. The combination with expanded perlite (EP) via the impregnation method overcomes the phase separation and liquid leakage of the CaCl2∙6H2O-MgCl2∙6H2O mixture. The composite PCM is form-stable with the maximum loading mass fraction up to 50 wt.% and latent heat of 73.55 J/g. EP also significantly reduces the thermal conductivity of the CaCl2∙6H2O-MgCl2∙6H2O from 0.732 to 0.144 W/(m·K). The heating-cooling cycling test reveals that the composite PCM is thermally stable. The cheap eutectic salt hydrate, with little supercooling, no phase separation and liquid leakage, low thermal conductivity and good thermal reliability, show great potential as envelope materials to save energy consumption in buildings.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Subject
General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献