Investigation on Vibration Signal Characteristics in a Centrifugal Pump Using EMD-LS-MFDFA

Author:

Liang XingORCID,Luo Yuanxing,Deng Fei,Li Yan

Abstract

Vibration signals from centrifugal pumps are nonlinear, non-smooth, and possess implied trend terms, which makes it difficult for traditional signal processing methods to accurately extract their fault characteristics and details. With a view to rectifying this, we introduced empirical mode decomposition (EMD) to extract the trend term signals. These were then refit using the least squares (LS) method. The result (EMD-LS) was then combined with multi-fractal theory to form a new signal identification method (EMD-LS-MFDFA), whose accuracy was verified with a binomial multi-fractal sequence (BMS). Then, based on the centrifugal pump test platform, the vibration signals of shell failures under different degrees of cavitation and separate states of loosened foot bolts were collected. The signals’ multi-fractal spectra parameters were analyzed using the EMD-LS-MFDFA method, from which five spectral parameters (Δα, Δf, α0, αmax, and αmin) were extracted for comparison and analysis. The results showed EMD-LS-MFDFA’s performance was closer to the BMS theoretical value than that of MFDFA, displayed high accuracy, and was fully capable of revealing the multiple fractal characteristics of the centrifugal pump fault vibration signal. Additionally, the mean values of the five types of multi-fractal spectral characteristic parameters it extracted were much greater than the normal state values. This indicates that the parameters could effectively distinguish the normal state and fault state of the centrifugal pump. Moreover, α0 and αmax had a smaller mean square than Δα, Δf and αmin, and their stability was higher. Thus, compared to the feature parameters extracted by MFDFA, our method could better realize the separation between the normal state, cavitation (whether slight, moderate, or severe), and when the anchor bolt was loose. This can be used to characterize centrifugal pump failure, quantify and characterize a pump’s different working states, and provide a meaningful reference for the diagnosis and study of pump faults.

Funder

Jiangxi Education Department Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference21 articles.

1. Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method

2. Feature extraction of turbine cavitation based on wavelet packet and fractal analysis;Li;J. Hydro Power,2013

3. The application of HHT and RBF neural networks for processing fault-vibration signals from centrifugal pumps;Zhou;J. Eng. Therm. Energy Power,2007

4. Application of slice bispectrum analysis to fault diagnosis of centrifugal pump;Xiangyang;J. Vib. Meas. Diagn.,2010

5. USING THE CORRELATION DIMENSION FOR VIBRATION FAULT DIAGNOSIS OF ROLLING ELEMENT BEARINGS—II. SELECTION OF EXPERIMENTAL PARAMETERS

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3