Experimental Test and Feasibility Analysis of Hydraulic Cylinder Position Control Based on Pressure Detection

Author:

Zhou Rulin,Meng LingyuORCID,Yuan Xiaoming

Abstract

This paper studies hydraulic cylinder position adjustment controlled by an on–off valve. The aim of this paper is to develop a method of position control for a hydraulic cylinder based on input and output pressure under the mutual coupling feedback of the load and flow, especially in multi-actuator coupling control scenarios. This method can solve the problem of position evaluation and hydraulic cylinder tracking in relation to position detection without a displacement sensor and provide the possibility of automatic adjustment of hydraulic support in the process of intelligent mining. First of all, according to the flow continuity equation and Navier–Stokes equation, a flow model with inlet and outlet pressure is derived. Secondly, the effectiveness of the flow resistance characteristic curve of differential valve is verified by experimental and theoretical analysis. Finally, through experimental verification, when the system pressure is larger than 10 MPa, the error between the actual experimental data and the data calculated by the fitting algorithm is within 5%, which is consistent with the derived formula and proves the validity of the simulation model.

Funder

Beijing Tianma Intelligent Control Technology Co., Ltd.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference27 articles.

1. Production, Purification and Characterization of the Hen Egg-White Lysozyme Inhibitor fromEnterobacter cloacaeM-1002

2. Top level design and practice of smart coal mines;Wang;J. China Coal Soc.,2020

3. Intelligent mining engineering systems in the structure of industry 4.0;Marina;E3s Web Conf.,2017

4. Intelligent Mining Technology for an Underground Metal Mine Based on Unmanned Equipment

5. Development course and prospect of the 50 years’comprehensive mechanized coal mining in China;Yan;Coal Sci. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3