Influence of Exogenous 28-Homobrassinolide Optimized Dosage and EDAH Application on Hormone Status, Grain Filling, and Maize Production

Author:

Hussain Mujahid,Wang ZhaoORCID,Mo You,Huang Guanmin,Kaousar Rehana,Tan Weiming

Abstract

Exogenously applied phytohormones improve the endosperm cells and establish greater kernel sink capacity and grain filling, improving grain yield. In this study, 28-Homobrassinolide (HBR) dosages (20, 25, and 30 mg a. i. ha−1) were applied separately at the silking stage under controlled conditions, and EDAH (a mixture of ethephon and diethyl aminoethyl hexanoate) dosage of 90 g a. i. ha−1 was sprayed at the jointing stage to enhance the lodging resistance. Our objective was to investigate whether the application of HBR under controlled conditions or with EDAH could enhance the grain filling rate by regulating endogenous hormones. The results showed that HBR at the silking stage significantly increased endogenous hormones (ABA, IAA, Z+ZR), hampered leaf senescence, enhanced photosynthetic, improved dry matter accumulation in grains, and increased the grain-filling period, filling rate, and thousand-grains weight. Additionally, HBR 25 and 30 mg a. i. ha−1 increased the final yield by 9.9% and 19.5% compared to the control (CK) in 2020 and 14.1% and 18.95% in 2021, respectively. There was no significant difference between the results obtained from HBR-controlled and EDAH treatments at the jointing stage. Thus, we conclude that spraying HBR 25~30 mg a. i. ha−1 under controlled conditions may increase the grain yield under normal weather conditions. In adverse weather conditions and heavy wind, spraying EDAH 90 g a. i. ha−1 at the jointing stage and HBR 30 mg a. i. ha−1 at the silking stage can enhance maize production.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3