Spray Cooling Schemes and Temperature Field Analysis of Ultra-High-Temperature Production Wells in Underground Coal Gasification

Author:

Tang Yang,Xiong Haoyu,He Yin,Huang Shunxiao,Wang Yuan

Abstract

In underground coal gasification (UCG), it is essential for UCG production to accurately control the temperature of the gas produced at the wellhead of the production well and correctly calculate the variation law of the temperature field in the whole wellbore. UCG wellbore structures use three wellbore sprayed water cooling schemes. These schemes consider the heat exchange mechanism between the wellbore and the formation, the division of the production wellbore into the spray chamber section and the non-spray section, and the established temperature field model of the whole wellbore. The research shows that, due to the large temperature gradient formed in the wellbore heat transfer route under the spray tubing water injection cooling scheme, the temperature of the produced gas drops the most. The annular water injection cooling scheme can protect the cement sheath to a certain extent and is easier to implement; therefore, it is more suitable to use this scheme to cool the production well. It is feasible to control the temperature of the production wellhead by controlling the temperature of the spray chamber. The greater the daily output of produced gas or the thermal conductivity of the tubing, the smaller the temperature change between the bottom hole and the wellhead, and the more the spray water temperature rises.

Funder

National Natural Science Foundation of China

National Key Research and Development Program

China Postdoctoral Science Foundation

International Science and Technology Cooperation Project Funding

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3