Numerical Simulation Approach for a Dynamically Operated Sorption-Enhanced Water-Gas Shift Reactor

Author:

Stadler TabeaORCID,Knoop Jan-Hendrik,Decker SimonORCID,Pfeifer Peter

Abstract

A dynamically operated sorption-enhanced water–gas shift reactor is modelled to leverage its performance by means of model-based process design. This reactor shall provide CO2-free synthesis gas for e-fuel production from pure CO. The nonlinear model equations describing simultaneous adsorption and reaction are solved with three numerical approaches in MATLAB: a built-in solver for partial differential equations, a semi-discretization method in combination with an ordinary differential equation solver, and an advanced graphic implementation of the latter method in Simulink. The novel implementation in Simulink offers various advantages for dynamic simulations and is expanded to a process model with six reaction chambers. The continuous conditions in the reaction chambers and the discrete states of the valves, which enable switching between reactive adsorption and regeneration, lead to a hybrid system. Controlling the discrete states in a finite-state machine in Stateflow enables automated switching between reactive adsorption and regeneration depending on predefined conditions, such as a time span or a concentration threshold in the product gas. The established chemical reactor simulation approach features unique possibilities in terms of simulation-driven development of operating procedures for intensified reactor operation. In a base case simulation, the sorbent usage for serial operation with adjusted switching times is increased by almost 15%.

Funder

European Commission

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference41 articles.

1. COP26 Outcomes;Proceedings of the UN Climate Change Conference at the SEC,2021

2. Framework Convention on Climate Change. Adoption of the Paris Agreement;Proceedings of the 21st Conference of the Parties,2015

3. A European Strategy for Low-Emission Mobility,2020

4. CO2 neutral fuels

5. Sorption enhanced reaction processes;Rodrigues,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3