Abstract
Propylene Glycol Alginate Sodium Sulfate (PSS) is widely produced and used in medicine as a marine drug for treating hyperlipidemia. During the sulfonation synthesis of PSS, the sulfonation of chlorosulfonic acid is exothermic. At high temperatures, the process can easily produce a large amount of ammonium sulfate. Ammonium sulfate adheres to PSS in crystal and participates in the sulfonation reaction. In this study, the sulfonation process of commercial PSS was reproduced in the laboratory using chlorosulfonic acid and formamide. We used differential scanning calorimetry and thermogravimetric analyzer to examine the thermal stability of PSS, and we used both differential and integral conversional methods to determine the appropriate thermokinetic models for this substance. We also established an autocatalytic model to study the conversion limit time and the maximum rate time of this substance. After calculation, the activation energy of this substance is no more than 60 kJ/mol, and it has other exothermic performances at different heating rates. The results help to optimize the sulfonation process of PSS and analyze the thermal risk of PSS with ammonium sulfate.
Funder
National Key Research and Development Plan
National Nature Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献