Low-Cost H-Grade Polyacrylamide Gel with High-Temperature Resistance

Author:

Yao Erdong,Li BojunORCID

Abstract

This paper presents a low-cost, high-temperature-resistant and high-strength polyacrylamide gel system formed by secondary cross-linking. The gel system (named JM186) used phenolic resin and organic zirconium as cross-linking agents, and the performance of the gel system was systematically evaluated under high temperature. The gel properties studied include: gel formation time, gel strength, thermal stability, sand-filled pipe sealing efficiency, and its microstructure. The concentration of polyacrylamide in JM186 gel system was as low as 0.3%, which can control the gelling time in a range of 1–9 h by adjusting the ratio of two cross-linking agents. It can resist temperature up to 120 °C without dehydration, and its highest gel strength can reach H grade. The modulus of elasticity (G’) and viscosity (G”) can reach 32.33 Pa and 3.25 Pa, respectively. DSC (differential scanning calorimetry) test indicated that the temperature of structural failure for this composite gel is 310.5 °C. The average sealing efficiency of the gel is 96.03% in sand-filled pipes. Finally, the gel microstructure was observed by cryo-scanning electron microscopy (Cryo-SEM). It was found that the gel system by secondary cross-linking has a dense and thickened network structure compared with the single cross-linker gel system. The gel is cross-linked by both the coordination bond and covalent bond, and the two cross-linking agents have a synergistic effect. This is the reason why the secondary cross-link gel system is better than the single-cross-linker gel system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3