A Machine Learning Approach for Predicting the Maximum Spreading Factor of Droplets upon Impact on Surfaces with Various Wettabilities

Author:

Tembely MoussaORCID,Vadillo Damien C.ORCID,Dolatabadi Ali,Soucemarianadin Arthur

Abstract

Drop impact on a dry substrate is ubiquitous in nature and industrial processes, including aircraft de-icing, ink-jet printing, microfluidics, and additive manufacturing. While the maximum spreading factor is crucial for controlling the efficiency of the majority of these processes, there is currently no comprehensive approach for predicting its value. In contrast to the traditional approach based on scaling laws and/or analytical models, this paper proposes a data-driven approach for estimating the maximum spreading factor using supervised machine learning (ML) algorithms such as linear regression, decision tree, random forest, and gradient boosting. For this purpose, a dataset of hundreds of experimental results from the literature and our own—spanning the last thirty years—is collected and analyzed. The dataset was divided into training and testing sets, each representing 70% and 30% of the input data, respectively. Subsequently, machine learning techniques were applied to relate the maximum spreading factor to relevant features such as flow controlling dimensionless numbers and substrate wettability. In the current study, the gradient boosting regression model, capable of handling structured high-dimensional data, is found to be the best-performing model, with an R2-score of more than 95%. Finally, the ML predictions agree well with the experimental data and are valid across a wide range of impact conditions. This work could pave the way for the development of a universal model for controlling droplet impact, enabling the optimization of a wide variety of industrial applications.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3