Abstract
This paper focuses on the frequency domain fluid–structure interaction (FSI) vibration characteristics of aircraft hydraulic pipe with complex constraints. The linear partial differential fourteen-equation model is applied to describe the nonlinear FSI dynamics of pipes conveying fluid with high-speed, high-pressure, a wide Reynolds number, and the vibration frequency range. The excitation, complex boundary, and middle constraint models of liquid-filled pipes are analytically established and added into the global model of the pipe system. These resulting models are solved by the improved Laplace transform transfer matrix method (LTTMM) in the frequency domain. Then, the dynamic response characteristics of an aircraft hydraulic pipe containing diverse constraints are investigated numerically and experimentally under four types of working conditions, and the improvement conditions for the numerical instabilities are presented. In general, the present method is highly efficient and convenient for rapid model parameter modifications, in order to be fully applicable to different pipe systems and analysis cases. The results reveal the complex resonant laws regarding aircraft hydraulic pipes with complex constraints in the broad frequency band, which can also provide theoretical reference and technical support for FSI vibration analysis and the control of aircraft hydraulic pipes.
Funder
National Natural Science Foundation of China
Special Project of Science and Technology Innovation and Entrepreneurship Fund of Tian Di Technology Co., Ltd.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献